Introduction to Beginner-Level Python

Leonardo Bernasconi
Center for Research Computing

University of Pittsburgh

PittResearch

Center for Research Computing

2 February 2023

CRC Foundational Python Track

Part 1: Introduction to Beginner-Level Python (2/22/2023)
Part 2: Introduction to Intermediate-Level Python (2/16/2023)

Part 3: Introduction to Data Manipulation and Visualization (3/2/2023)

Industry-sponsored Al/ML Workshops
More details to come in February.

https://crc.pitt.edu/training/crc-workshops-spring-2023

) ,,‘(.%’%(” %
|,, V4 'aYoaravYes h oAl e
INC.SC. A1 (i
AN DI AL O 11

Center for Research Computing

2o

https://crc.pitt.edu/training/crc-workshops-spring-2023

Purpose of this Workshop

- Learn hot to use Python for automating simple repetitive tasks

- Basic ideas on how to create and run programs in Python

- Understand how to structure a code to make it reusable and readable
- Learn how to install packages to extend Python’s capabilities

Pitt

Center for Research Computing

Purpose of this Workshop

- Learn hot to use Python for automating simple repetitive tasks

- Basic ideas on how to create and run programs in Python

- Understand how to structure a code to make it reusable and readable
- Learn how to install packages to extend Python’s capabilities

About me

PhD in Physical and Theoretical Chemistry (Oxford, UK, 2001)

Postdoc in Theoretical Chemistry (Cambridge, UK, 2001-2004)

Postdoc in Theoretical Chemistry (Amsterdam, The Netherlands, 2004-2008)
Principal Scientist (STFC Rutherford-Appleton Lab, UK, 2008-218)

Research Assistant Professor in Chemistry and Consultant at CRC (2018-)

H(t)W(ry, ...ty t) = ih%\ll(rl, N Y

Pitt

Center for Research Computing

Overview

Introduction: What is Python

How to run Python

Python syntax

Examples

Virtual environments

Introduction to NumPy/Matplotlib

o UsEWwh e

Pitt

Center for Research Computing

1
Introduction

PittResearch

Center for Research Computing

@ python’

- A general-purpose scripting and programming language
- Itis a high-level language: it looks more like English than machine language
- ltisan interpreted language: the interpreter converts it line-by-line into ML

- The structure of Python helps programmers write clear and readable code
- It can be useful for small scripts as well as for large software projects

- Arelatively young language: first release by Guido van Rossum in 1991,
followed by Python 2 (2000) and Python 3 (2008)

- Widely used in industry and academia

- One of the main strength of Python is the existence of a huge standard
library: over 287,000 packages for science, machine learning, data analytics,
etc.

Pitt

Center for Research Computing

Python is free and open source
It is maintained and distributed by the Python Software Foundation
It is available on most OSs

o - I

Community

e python”

About Downloads Documentation Success Stories News Events

Compound Data Types

Lists (known as arrays in other languages) are one of the
compound data types that Python understands. Lists can be
indexed, sliced and manipulated with other built-in

functions. More abo in Python 3

['BANANA', 'APPLE', 'LIME']

[(e, 'Banana'), (1, 'Apple'), (2, 'Lime')]

Python is a programming language that lets you work quickly

and integrate systems more effectively. »> Learn More

O Get Started

Whether you're new to
programming or an experienced
developer, it's easy to learn and use
Python.

Start with our Beginner’s Guide

& Download

Python source code and installers
are available for download for all

versions!

Latest: Python 3.9.1

https://www.python.org

Docs

Documentation for Python's
standard library, along with
tutorials and guides, are available
online.

docs.python.org

&= Jobs

Looking for work or have a Python
related position that you're trying to
hire for? Our relaunched
community-run job board is the
place to go.

jobs.python.org

PittResearch

Center for Research Computing

https://www.python.org

- Python packages are distributed by their developers
- They are typically very easy to install

Help Sponsor Login Register

Find, install and publish Python packages
with the Python Package Index

Search projects

Or browse projects

288,219 projects 2,370,027 releases 3,854,182 files 483,366 users

™ The Python Package Index (PyPl) is a repository of software for the Python
P lJ t O n programming language.

by PaCkage PyPI helps you find and install software developed and shared by the Python community. Learn about
(\ ’ Index installing packages .

Package authors use PyPI to distribute their software. Learn how to package your Python code for
PyPI &Z.

https://pypi.org

PittResearch

Center for Research Computing

https://pypi.org

Main strength of Python

The ability to write clear and well-structured code, with no need to worry about low
level operations (e.g., memory management)

Main disadvantage

Python code is slow compared to compiled languages (https://julialang.org/benchmarks/)

Often the best solution is to write computationally intensive parts of a code in a
compiled language and use Python wrappers to orchestrate these low-level, but very
efficient, parts of the code.

SciPy

PittResearch

Center for Research Computing

https://julialang.org/benchmarks/

2
How to run Python

PittResearch

Center for Research Computing

How to run Python

1) Through an interactive session

2) Executing a script/program

3) Using Jupyter notebooks (https://jupyter.org)

4) Using Google Colab (https://colab.research.google.com)

5) Using an integrated development environment (IDE), e.g., PyCharm
(https://www.jetbrains.com/pycharm/)

:? o e S : University of
N s ————— Pittsburgh | Center For Research Computing
| ‘ 3 - . G & G W
. h— Jupyter notebooks on the
e G B G T :
! | 'i | CRC cluster through Jupyter Hub and
] Open Ondemand
"

https://crc.pitt.edu/Access-CRC-Web-Portals

PittResearch

Center for Research Computing

https://jupyter.org/
https://colab.research.google.com/
https://www.jetbrains.com/pycharm/
https://crc.pitt.edu/Access-CRC-Web-Portals

Interactive sessions

1) Start Python: python (for Python2) or python3
2) Type commands line by line

3) Exit using: +n

or:

®e0e 2 leonardobernasconi — leb140@login0:~ — ssh -| leb140 h2p.cre.pitt.edu — 100x25

[[lebl4@@login® ~]$ python
. Python 2.7.5 (default, Jun 11 2019, 14:33:56)
exit () [GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
[lebl4@@login® ~]$
[lebl4@@login® ~]$
[lebl4@@login® ~]$ python3
Python 3.6.8 (default, Aug 13 2020, ©7:46:32)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.

[
[
[
[

[>>>

[lebl40@login® ~]$ |

PittResearch

Center for Research Computing

3
Python syntax

PittResearch

Center for Research Computing

Data types

Numbers

12, 299792458, 0.001, 3+57
Python as a calculator

Variable assignment (e.g., ¢ = 299792458)

Operators

+ “5 /s %y /7,

::!_<>>—<=

I ’ I

Logical variables (True and False)

The math module:

import math
dir(math)

Built-in modules: help(‘modules’)

Pitt

Center for Research Computing

Data types

Lists

1 =1[1, 2, 13.3, “today”, 6+5j]

List index (always integer; can be negative)
Length of a list: Ten (1)

Sublists: note slicing is from an index to a given element position

List manipulation:

insert(pos, element), append(), remove(), pop(), extend()
Tistl + Tist2

Membership operators: in / not 1n

Nested lists

Center for Research Computing

Data types

Strings

stringl = “today”
string2 = ‘tomorrow’
string3 = ‘“”yesterday”’

String indices
Substrings, slicing

Concatenation: stringl + string2 + string3
Repetition: stringl * 3

Membership operators: in / not 1n

Pitt

Center for Research Computing

Data types

Tuples

Similar to strings, but their elements are immutable
tl = (1, 2, 3)

Tuple indices

Substrings, slicing

Nested tuples and their indices
Membership operators: in / not 1in

Pitt

Center for Research Computing

Data types

Dictionaries

dl = {}

di[1] = 1; d1[2] = 4; etc.

Keys: d1.keys()
Values: d1l.values()
Clear: dl.clear()

Nested dictionaries

Pitt

Center for Research Computing

Data types

Files
Read from file and write to file

Read from file:

input_file = open(‘input.file’, ‘r’)
input_file.read()

input_file.close()

Write to file:

output_file = open(‘output.file’, ‘w’)
output_file.write()
output_file.close()

We can read/write a file as a single string or as a sequence of lines

Pitt

Center for Research Computing

Control statements and loops

Conditional

1f conditionl:

(execute some instructions)
elif conditionZ:

(execute some other instructions)
elif conditions:

(execute some other instructions)
else:

(execute some other instructions)

Indentation (four blank spaces) is very important in Python!!!

Switch to running scripts.

/1home/sam/1ebl140/IntroToPython/examplel.py

Center for Research Computing

[XOK) ~ leo — leb140®@login0:~/IntroToPython — ssh -Y -1 leb140 h2p.crc.pitt.edu — 90x26
f=15

Wi g == 18
print(a)
print("... It is Monday")
elif a == 15:
print(a)
print("... It is Tuesday")
else:
print("... I do not know what day it is")

"examplel.py" 10L, 174C

m

PittResearch

Center for Research Computing

Control statements and loops

for loop

for variable in sequence:
(execute some instructions)

The function range() :
range(n)
range(start, stop)
range(start, stop, step)

Nested loops

Loops with 1T/else blocks:
for variable in sequence:
if Condition:
(execute some instructions)
else: .
(execute some other instructions) Pltt

Loops and conditionals: example2.py Center for Research Computing

[ON | leo — leb140@login0:~/IntroToPython — ssh -Y -1 leb140 h2p.crc.pitt.edu — 90x26

Bmylist = [1, 2, 3]

#

#for element in mylist:
print(element)

| #
I am going to ignore the lines above

#for i in range(9, 50, 2):
print(i)

myliSta=C[1Te 0 N b e

for element in mylist:

if element % 2 == 0:
print(element)
print("Even number")

else:
print(element)
print("0dd number")

"example2.py" 19L, 340C

PittResearch

Center for Research Computing

Control statements and loops

Reading files line-by-line
open_file = open(“some_file”, “r”)

for 1ine 1in open_file:
(execute some instructions on the line)

open_file.close()

Example: read a file with multiple values per line and store the values in lists
The strip() and spTlit() methods
example3.py

Pitt

Center for Research Computing

® e leo — leb140@login0:~[IntroToPython — ssh -Y -l leb140 h2p.crc.pitt.edu — 90x26

nyile =Hopen @ifslieRE It

for line in myfile:
mylist = line.strip("\n").split(",")
print(int(mylist[@]) + int(mylist[1]))
#print(line.strip("\n"))
print(mylist)

myfile.close()

"example3.py" 9L, 199C

PittResearch

Center for Research Computing

Control statements and loops

while loop

while condition:
(execute some instructions)

Nested loops

Loops with else blocks:
while condition:

(execute some instructions)
else:

(execute some other instructions)

exampled.py

PittResear

Center for Research Computing

(o @ " leo — leb140®@login0:~[IntroToPython — ssh -Y -1 leb140 h2p.crc.pitt.edu — 90x26

i=0
while i <= 10:
TR =R51
print(i)
else:
print("i is larger than 5")
i+=1

"example4.py" 8L, 111C

\"lllIllllllllllllllIIlIllIllllllIllIlIllIllllllIllIlIllIlllllllllllllllllllllllll’“/

PittResearch

Center for Research Computing

Control statements and loops

The break statement

It is used to terminate a for/while loop when a given condition is met

for variable in sequence:
(execute some instructions)
1f condition:
break
(execute some other instructions)

The continue statement
It is used to skip instructions within a for/while loop

for variable in sequence:
(execute some instructions)
1f condition:
continue
(execute some other instructions)

Pitt

Center for Research Computing

Control statements and loops

The pass statement
It tells the Python interpreter to do nothing. It works as a placeholder.

for variable in sequence:
(execute some instructions)
1f condition:
pass
else:
(do something else)

Pitt

Center for Research Computing

Functions

Functions are blocks of code that carry out specific tasks. They are useful if a
given set of operations must be repeated more than once in a code.

They give the code re-usability, i.e., the ability to use a given set of instructions
at different stages of the computation without having to modify the code.

They help with code readability, especially if they are well documented. All the
instructions required by a given task are grouped together.

They also avoid redundancy, helping with code maintainability and greatly
improving extendibility.

Functions (and their equivalents in other programming languages) are essential
ingredients in good programming practice.

Pitt

Center for Research Computing

Functions

def function_name(function_arguments):
(do something)
return
(return is optional)
Default arguments can be used to avoid errors when calling a function
def function_name(argl, arg2=something):
(do something)
return

Functions always appear before the main code.

User defined functions and built-in functions

See functionl.py Pltt

Center for Research Computing

® e leo — leb140@login0:~/IntroToPython — ssh -Y -l leb140 h2p.crc.pitt.edu — 90x26

I A function that takes two numbers as input, squares the first number and adds

the second number and returns the result.
def myfunction(a_number, another_number):
""iThis function does what I wrote above."""

return a_number * a_number + another_number

def anotherfunction(a_number):
"""This function computed the square of a_number."""
return a_number * a_number

Main code

for a in range(10):
b=a+4
print(myfunction(a, b))
print(anotherfunction(a))

~
~
~

~

"functionl.py" 21L, 498C

PittResearch

Center for Research Computing

Invoking external commands in Python

List files using Is command:
from subprocess import call

call(‘1s’?)

Return date using the Unix ‘date’ command:

import subprocess
time = subprocess.check_output(‘date’)
print(“It 1s”, time)

PittResearch

Center for Research Computing

PEP8: Style Guide for Python code

Guidelines that improve the readability and consistency of Python code

https://peps.python.org/pep-0008/

Python syntax checkers can be installed, which parse Python code and report any PEP8
violations, e.g., pip8 and pycodestyle.

They can be installed in a virtual environment (see below) using
python3 -m pip install pep8
or

python3 -m pip install pycodestyle

Center for Research Computing

https://peps.python.org/pep-0008/

4
Examples

PittResearch

Center for Research Computing

Functions

Exercise 1
Write a function that returns all prime numbers up to a given maximum.

A prime number is an integer greater than 1 that cannot be written as the product of
any lower natural number: 2 is prime, 3 is prime, 4=2*2 is not prime, etc.

Questions:
1) What should the input parameter(s) of the function be?

2) How do we use loops to find out if a given number is the product of two lower
numbers?

3) What should the function return?

Pitt

Center for Research Computing

[ON] leonardobernasconi — leb140®@login0:~/IntroToPython — ssh -Y -1 leb140 h2p.crc.pitt.edu — 113x31

def primes(Maxnumber):
"unThis function returns a list of prime numbers within the range (2, maxnumber).

Input:

maxnumber = maximum number in the range to consider;
Output:

A list of prime numbers up to maxnumber."""

Define the list of prime numbers
prime_numbers = []

Loop over all integers from 2 to maxnumber
for i in range(2, maxnumber+1):

I assume that i is prime
i_is_prime = True

Loop over integers lower than i
for j in range(2, i):

L ==a
i_is_prime = False
break

if i_is_prime:
prime_numbers.append (i)

return(prime_numbers)

1,12 Top

prime_numbers.py PittReSeaI‘Ch

Center for Research Computing

Functions

Exercise 2

Write a code (containing at least one function) that computes the difference between a
series of numbers read from two different files (number from filel minus number from
file 2) and saves these differences to an output file file3.

Note: each of the two input files contains one number per line, but the two files need
not have the same number of lines. We will only compute differences for numbers that
can be read from both files.

Questions:

1) How many files do we need to open at a given time?

2) How do we deal with the fact that the number of lines in the two input files can be
different?

Pitt

Center for Research Computing

[NON] & leonardobernasconi — leb140@login0:~/Python — ssh -Y -I leb140 h2p.crc.pitt.edu — 122x58

def subtract(a, b):

"""This function computes an element-by-element difference between the two lists
a and b and returns is as a list c."""

Initialize return list ¢ (an empty list)
=[]

Find the number of elements for which the difference can be computed:
We use the intrinsic function min
maxel = min(len(a), len(b))

Index for elements of a and b
index = @

Loop on the elements of a

while index < maxel:
c.append(a[index]-b[index])
index += 1

return ¢
Main program

Read lines of filel and store them in list aread
finput = open("filel", 'r')

aread = finput.readlines()

finput.close()

Read lines of file2 and store them in list bread
finput = open("file2", 'r')

bread = finput.readlines()

finput.close()

Convert aread into a list of integers (a)

a=1[]
for item in aread:
a.append(int(item))
Convert aread into a list of integers (a)
b =[]
for item in bread:
b.append(int(item))

Compute the element-by-element difference between a and b
aminb = subtract(a, b)

Convert aminb into a list of strings (aminbs)
aminbs = []
for item in aminb:
aminbs.append(str(item) + "\n") # We need to add "\n" to indicate new lines

Print aminb to a file file3
fout = open("file3", 'w')
fout.writelines({aminbs)

~

56,0-1

au)

Possible solution to
Exercise 2.

Can we improve this
code?

PittResearch

Center for Research Computing

@00

=) leonardobernasconi — leb140@login0:~/Python — ssh -Y -1 leb140 h2p.crc.pitt.edu — 122x58

def subtract(a, b):

a and b and returns is as a list c."""
Initialize return list ¢ (an empty list)
c=1]
We use the intrinsic function min

maxel = min(len(a), len(b))

Index for elements of a and b
index = @

Loop on the elements of a

while index < maxel:
c.append(a[index]-b[index])
index += 1

return ¢

Main program

Read lines of filel and store them in list aread
finput = open("filel", 'r')

aread = finput.readlines()

finput.close()

finput = open("file2", 'r')
bread = finput.readlines()
finput.close()

|# Read lines of file2 and store them in list bread

I# Convert aread into a list of integers (a)
a=[]
for item in aread:

a.append(int(item))
I# Convert aread into a list of integers (a)
b =[]
for item in bread:

b.append(int(item))

aminb = subtract(a, b)

Convert aminb into a list of strings (aminbs)
aminbs = []
for item in aminb:

Print aminb to a file file3
fout = open("file3", 'w')
fout.writelines({aminbs)

~

"""This function computes an element-by-element difference between the two lists

Find the number of elements for which the difference can be computed:

Unnecessary
code duplication

Compute the element-by-element difference between a and b

aminbs.append(str(item) + "\n") # We need to add "\n" to indicate new lines

56,0-1

au)

Possible solution to
Exercise 2.

Can we improve this
code?

PittResearch

Center for Research Computing

® [] leonardobernasconi — leb140@login0:~/Python — ssh -Y -I leb140 h2p.crc.pitt.edu — 120x52

flef subtract(a, b): -

"""This function computes an element-by-element difference between the two lists Exceptlon handllng

a and b and returns is as a list c."""

Initialize return list c¢ (an empty list)
c= [l

Find the number of elements for which the difference can be computed:
We use the intrinsic function min
maxel = min(len(a), len(b))

Index for elements of a and b
index = 0

Loop on the elements of a

while index < maxel:
c.append(a[index]-b[index])
index += 1

return C

s0.p 1,1 Al
def subtract(a, b):

"""This function computes an element-by-element difference between the two lists
a and b and returns is as a list c."""

Initialize return list ¢ (an empty list)

c=]

Index for elements of a and b
index = @

Loop on the elements of a
for elementa in a:

Exception handling
try:
c.append(elementa-b [index]) ° °
indox = 1 Exception handling
except:
break

return C

sl.p 1,1 Al

Center for Research Computing

5
Virtual environments

PittResearch

Center for Research Computing

Virtual environments

A virtual environment is a complete Python installation which is isolated from the
system Python and from other virtual environments.

The Python interpreter, scripts, libraries and packages installed in the virtual
environment are independent and may differ from the system Python.

Virtual environments are useful for maintaining specific sets of packages or different
versions of the same package.

They are very useful when we work on HPC systems, like the CRC cluster, which do not
allow users to modify the system Python. With virtual environments we have complete

control on package installation, uninstallation, etc.

Official man page: https://docs.python.org/3/library/venv.html

Pitt

Center for Research Computing

https://docs.python.org/3/library/venv.html

Virtual environments

The command venv is used to create a new virtual environment:

python3 -m venv myenv

This will create a directory myenv containing the new Python installation.
We now need to activate the environment:

source myenv/bin/activate

We can “exit” the virtual environment and return to the system Python using:
deactivate

(For Windows, see https://docs.python.org/3/library/venv.html or
https://realpython.com/python-virtual-environments-a-primer/.)

Center for Research Computing

https://docs.python.org/3/library/venv.html
https://realpython.com/python-virtual-environments-a-primer/

Virtual environments: install Python packages

After activating a virtual environment, we will be using the specific version of Python
built in the environment.

To install new packages, use:
python3 -m pip install <package_name>

If a given virtual environment is no longer needed, we can delete it simply by removing
its directory:

rm -rf myenv/

Pitt

Center for Research Computing

Example: install numpy in a virtual environment myenv

Create and activate the virtual environment:

python3 -m venv myenv
source myenv/bin/activate

Install numpy:

python3 -m pip install numpy

Now launch the python interpreter:

python3

and check if the new package has been installed:

import numpy

To list all installed packages: python3 -m pip Tist

Pitt

Center for Research Computing

Virtual environments: Anaconda (https://anaconda.org)

Create a conda environment:

conda create -n yourenvname python=x.x anaconda
Activate the virtual environment:

source activate yourenvname

Install packages:

conda install -n yourenvname [package]

Deactivate the environment:

source deactivate

https://uoa-eresearch.github.io/eresearch-cookbook/
recipe/2014/11/20/conda/

A N 997 IS
': %’»‘,« f—h4 ‘ v‘i - |

Center for Research Computing

https://anaconda.org/
https://uoa-eresearch.github.io/eresearch-cookbook/recipe/2014/11/20/conda/
https://uoa-eresearch.github.io/eresearch-cookbook/recipe/2014/11/20/conda/

Using virtual environments with CRC JupyterHub

As an example, we will create a virtual environment called myenv to be used with Jypyter Hub in
notebooks.

In a terminal (either on h2p or on Jupyter Hub) use the following commands:

module purge

module load python/3.7.0

python3 -m venv myenv

source myenv/bin/activate

python3 -m pip install ipykernel

python3 -m ipykernel install --user --name=myenv

On Jupyter Hub open a new notebook and select myenv from the notebook kernels available. To
check that the version of Python running is the one from the virtual environment, and not the
system Python, use:

[1: import sys
print (sys.executable)

which should return something like

[...]/.virtualenvs/myenv/bin/python

PittResearch

https://crc.pitt.edu/user-support/installed-software/python

Center for Research Computing

https://crc.pitt.edu/user-support/installed-software/python

Python on the CRC cluster

H2P access: https://crc.pitt.edu/user-support/cluster-access

To see the versions of python installed: module spider python

To use a specific version of Python: module load python/3.7.0

® [] leo — 1eb140@login0:~/IntroToPython — ssh -Y -1 leb140 h2p.crc.pitt.edu — 111x42

python:

Description:
Anaconda is the leading open data science platform powered by Python.

Versions:
python/anaconda2.7-4.2.0_westpa
python/anaconda2.7-4.2.0
python/anaconda2.7-4.4.0_genomics
python/anaconda2.7-5.2.0_westpa
python/anaconda2.7-5.2.0
python/anaconda2.7-2018.12_westpa
python/anaconda3.5-4.2.08-dev
python/anaconda3.5-4.2.0
python/anaconda3.6-5.2.0_deeplabcut
python/anaconda3.6-5.2.0_leap
python/anaconda3.6-5.2.0
python/anaconda3.7-5.3.1_genomics
python/anaconda3.7-2018.12_westpa
python/anaconda3.7-2019.03_astro_bagpipes-0.8.2

python/anaconda3.7-2019.03_astro_bagpipes-0.8.8
python/anaconda3.7-2019.03_astro
python/anaconda3.7-2019.03_deformetrica
python/anaconda3.7-2019.03
python/anaconda3.8-2020.11
python/anaconda3.9-2021.11
python/bioconda-2.7-5.2.0
python/bioconda-3.6-5.2.0
python/bioconda-3.7-2019.03

python/intel-3.5

python/intel-3.6_2018.3.039
python/intel-3.6_2019.2.066

python/intel-3.6 @

python/ondemand-jupyter-python3.8 X
python/3.7.0-dev BYQIay
python/3.7.0-fastx 2 d
python/3.7.0 S M

Other possible modules matches:

Lines 1-41) Center for Research Computing

https://crc.pitt.edu/user-support/cluster-access

6
NumPy/Matplotlib

PittResearch

Center for Research Computing

=56

Install Gettlng start- Docttnmenta Report bugs Blogs

SciPy (pronounced “Sigh Pie") is a Python-based ecosystem of open-source software for mathematics, science,
and engineering. In particular, these are some of the core packages:

.:, NumPy SciPy library Matplotlib
N il = Base N-dimensional Fundamental li- Comprehensive 2-D
¢ array package brary for scientific plotting
computing
I Plyi: IPython SymPy pandas
yl: Enhanced interac- Symbolic mathe- Data structures &
IPython & :
tive console matics analysis

N U M F@CUS Large parts of the SciPy ecosystem (including all six projects above) are fiscally spon-

OPEN CODE * BETTER SCIENCE sored by NumFOCUS.

News

https://scipy.org

About SciPy
Getting started
Documentation
Install

Bug reports
Codes of Conduct
SciPy conferences &
Topical software
Citing

Cookbook
Blogs &
NumFOCUS o

CORE PACKAGES:
NumPy

SciPy library &
Matplotlib &
IPython &
SymPy o
pandas o

PittResearch

Center for Research Computing

https://scipy.org/

A few words on NumPy

NumPy is a Python library used for working with arrays. It also functions for working in
domain of linear algebra, Fourier transform and matrices.

You can see what NumPy makes available using the dir() function

import numpy as np
dir(numpy)

NumPy provides an array object that is up to 50x faster than traditional Python lists.

arr = numpy.array([1l, 2, 3, 4, 5])
print(arr)

arr = np.array([[1, 2, 3], [4, 5, 6]]1)
print(arr)

Arrays can have 1, 2, 3 or more dimensions.

Center for Research Computing

Arrays

Accessing array elements:

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]]1)
print(arr[0, 1])

Negative indices can be used as in standard Python lists. Slicing also works like in lists:
printCarr[l, 1:4])
Copy and view arrays:

arr = np.array([1, 2, 3, 4, 5])
X = arr.copy(Q)

arr[0] =0

print(arr); print(x)

arr = np.array([1, 2, 3, 4, 5])
y = arr.view() i
y[0] =0 Pitt

print(arr); print(y) Center for Research Computing

Shape, reshape and iteration

Shape of an array:

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]1])
print(arr.shape)

Answer: (2, 4)
Reshape an array:

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
print(newarr)

Iterating through array elements:

arr = np.array([1, 2, 3]1)
for x in arr:

print(x) I?itt

Center for Research Computing

Join, split and search arrays

Join arrays:

arrl = np.array([[1, 2], [3, 4]11)
arr2 = np.array([[5, 6], [7, 8]]1)
arr = np.concatenate((arrl, arr2), axis=1)

Split arrays:

arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 4)

Search arrays:

arr = np.array([1, 2, 3, 4, 5, 4, 4])
X = np.where(arr == 4)

Answer: (array([3, 5, 6]1),)
Pitt

Center for Research Computing

Sort and filter arrays

Sort arrays:

arr = np.array([3, 2, 0, 1])
print(np.sort(arr))

Answer: [0 1 2 3]

It can be used with higher-dimensional arrays and with arrays of strings or booleans.
Filter arrays: use a boolean index list to select values from an array:

arr = np.array([41, 42, 43, 44])
X = [True, False, True, False]
hewarr = arr[x]

print(newarr)

Answer: [41 43]
Pitt

Center for Research Computing

Universal functions (ufunc)

In addition to built-in functions, user-defined functions can be defined, which perform
faster than standard Python functions on lists and operate on NumPy arrays.

Example:
import numpy as np

def myadd(x, y):
return X+y

myadd = np.frompyfunc(myadd, 2, 1)
print(myadd([1, 2, 3, 4], [5, 6, 7, 8]))

frompyfunc adds the new function myadd to the NumPy ufunc library. ufunc uses
vectorization, which is a faster way to operate on elements of arrays.

More info: Pitt SCC

https://www.w3schools.com/python/numpy/numpy ufunc.asp Center for Research Computing

https://www.w3schools.com/python/numpy/numpy_ufunc.asp

Plotting data

We will need to install two additional packages in our virtual environment:
python3 -m pip install matplotlib

python3 -m pip install seaborn

More info:
https://matplotlib.org . D PP
https://seaborn.pydata.org Pltt Rel‘)edl («h

Center for Research Computing

https://matplotlib.org/
https://seaborn.pydata.org/

Example: visualizing a normal distribution

The normal (or Gaussian) distribution represents the distribution of many events
around a maximum. In NumPy, we can build this distribution using the random
module:

from numpy import random

The method random.normal creates the distribution:
random.normal (loc, scale, size)

Toc: center of the distribution (mean)

scale: width of the distribution (standard deviation)
size: shape of the NumPy array containing the distribution

Pitt

Center for Research Computing

Example: visualizing a normal distribution

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

Create distribution
sample = random.normal(loc=0.0, scale=1.0, si1ze=1000)

Plot graph
sns.distplot(sample, hist=False)
plt.show()

We can also save the plot to a file
plt.savefig(“plot.png”)

More info:

https://matplotlib.org Pitt Resedr(‘h

https://seaborn.pydata.org

Center for Research Computing

https://matplotlib.org/
https://seaborn.pydata.org/

Example: visualizing a normal distribution

1 anrlnm
'Fr'Om numpy -|mp0|:'t V'. © Figure 1
import matplotlib.
import seaborn as

0.40 A

Create distribut oss]
sample = random.no .|

Plot graph .
sns.distplot(sampl

p-lt.ShOW() 0.15 1

Density

0.20 A

0.10 A

0.05 A

0.00 T T T T T
—4 —2 0 2 4

A €e>»d Q= x=2.959 y=0.2383

More info:

https://matplotlib.org PittReSe(]rCh

https://seaborn.pydata.org

Center for Research Computing

https://matplotlib.org/
https://seaborn.pydata.org/

Example: visualizing a normal distribution

from numpy import random

import matplotlib.pyplot as plt
import seaborn as sns

Make the example reproducible
np.random.seed(0)

Create distribution
sample = random.normal(loc=0.0, scale=1.0, si1ze=1000)

Plot graph
sns.distplot(sample, hist=False)

plt.show()
More info:
https://matplotlib.org Pitt R@S@d ‘[‘Ch

https://seaborn.pydata.org

Center for Research Computing

https://matplotlib.org/
https://seaborn.pydata.org/

Summary

- Pythonis a powerful all-purpose programming and scripting language
- It has a huge standard library of packages

- Itis easy and fun to learn

- It can be used to write wrappers for low-level code

- (It has object-oriented capabilities)

Where to go from here:

- Develop your own software project

- Test Jupyter and Colab notebooks

- Play with virtual environments; test Python packages

Questions and suggestions: leb140@pitt.edu

CRC web site: https://crc.pitt.edu

Pitt

Center for Research Computing

mailto:leb140@pitt.edu
https://crc.pitt.edu/

