
Introduction to Beginner-Level Python

Leonardo Bernasconi
Center for Research Computing

University of Pittsburgh

2 February 2023

CRC Foundational Python Track

Part 1: Introduction to Beginner-Level Python (2/22/2023)

Part 2: Introduction to Intermediate-Level Python (2/16/2023)

Part 3: Introduction to Data Manipulation and Visualization (3/2/2023)

Industry-sponsored AI/ML Workshops
More details to come in February.

https://crc.pitt.edu/training/crc-workshops-spring-2023

https://crc.pitt.edu/training/crc-workshops-spring-2023

Purpose of this Workshop

- Learn hot to use Python for automating simple repetitive tasks
- Basic ideas on how to create and run programs in Python
- Understand how to structure a code to make it reusable and readable
- Learn how to install packages to extend Python’s capabilities

Purpose of this Workshop

- Learn hot to use Python for automating simple repetitive tasks
- Basic ideas on how to create and run programs in Python
- Understand how to structure a code to make it reusable and readable
- Learn how to install packages to extend Python’s capabilities

About me

PhD in Physical and Theoretical Chemistry (Oxford, UK, 2001)
Postdoc in Theoretical Chemistry (Cambridge, UK, 2001-2004)
Postdoc in Theoretical Chemistry (Amsterdam, The Netherlands, 2004-2008)
Principal Scientist (STFC Rutherford-Appleton Lab, UK, 2008-218)
Research Assistant Professor in Chemistry and Consultant at CRC (2018-)

Overview

1. Introduction: What is Python
2. How to run Python
3. Python syntax
4. Examples
5. Virtual environments
6. Introduction to NumPy/Matplotlib

1
Introduction

- A general-purpose scripting and programming language
- It is a high-level language: it looks more like English than machine language
- It is an interpreted language: the interpreter converts it line-by-line into ML

- The structure of Python helps programmers write clear and readable code
- It can be useful for small scripts as well as for large software projects

- A relatively young language: first release by Guido van Rossum in 1991,
followed by Python 2 (2000) and Python 3 (2008)

- Widely used in industry and academia
- One of the main strength of Python is the existence of a huge standard

library: over 287,000 packages for science, machine learning, data analytics,
etc.

- Python is free and open source
- It is maintained and distributed by the Python Software Foundation
- It is available on most OSs

https://www.python.org

https://www.python.org

- Python packages are distributed by their developers
- They are typically very easy to install

https://pypi.org

https://pypi.org

Main strength of Python

The ability to write clear and well-structured code, with no need to worry about low
level operations (e.g., memory management)

Main disadvantage

Python code is slow compared to compiled languages (https://julialang.org/benchmarks/)

Often the best solution is to write computationally intensive parts of a code in a
compiled language and use Python wrappers to orchestrate these low-level, but very
efficient, parts of the code.

https://julialang.org/benchmarks/

2
How to run Python

How to run Python

1) Through an interactive session
2) Executing a script/program
3) Using Jupyter notebooks (https://jupyter.org)
4) Using Google Colab (https://colab.research.google.com)
5) Using an integrated development environment (IDE), e.g., PyCharm

(https://www.jetbrains.com/pycharm/)

Jupyter notebooks on the
CRC cluster through Jupyter Hub and
Open Ondemand

https://crc.pitt.edu/Access-CRC-Web-Portals

https://jupyter.org/
https://colab.research.google.com/
https://www.jetbrains.com/pycharm/
https://crc.pitt.edu/Access-CRC-Web-Portals

Interactive sessions

1) Start Python: python (for Python2) or python3
2) Type commands line by line
3) Exit using:

or:

exit()

3
Python syntax

Data types

Numbers

12, 299792458, 0.001, 3+5j
Python as a calculator
Variable assignment (e.g., c = 299792458)

Operators

+, -, *, /, %, //, **
==, !=, <, >, >=, <=
Logical variables (True and False)

The math module:

import math
dir(math)

Built-in modules: help(‘modules’)

Data types

Lists

l = [1, 2, 13.3, “today”, 6+5j]

List index (always integer; can be negative)
Length of a list: len(l)

Sublists: note slicing is from an index to a given element position

List manipulation:
insert(pos, element), append(), remove(), pop(), extend()
list1 + list2

Membership operators: in / not in

Nested lists

Data types

Strings

string1 = “today”
string2 = ‘tomorrow’
string3 = ‘”yesterday”’

String indices
Substrings, slicing

Concatenation: string1 + string2 + string3
Repetition: string1 * 3

Membership operators: in / not in

Data types

Tuples
Similar to strings, but their elements are immutable

t1 = (1, 2, 3)

Tuple indices

Substrings, slicing

Nested tuples and their indices
Membership operators: in / not in

Data types

Dictionaries

d1 = {}
d1[1] = 1; d1[2] = 4; etc.

Keys: d1.keys()
Values: d1.values()
Clear: d1.clear()

Nested dictionaries

Data types

Files
Read from file and write to file

Read from file:
input_file = open(‘input.file’, ‘r’)
input_file.read()
input_file.close()

Write to file:
output_file = open(‘output.file’, ‘w’)
output_file.write()
output_file.close()

We can read/write a file as a single string or as a sequence of lines

Control statements and loops

Conditional

if condition1:
(execute some instructions)

elif condition2:
(execute some other instructions)

elif condition3:
(execute some other instructions)

else:
(execute some other instructions)

Indentation (four blank spaces) is very important in Python!!!

Switch to running scripts.

/ihome/sam/leb140/IntroToPython/example1.py

Control statements and loops

for loop

for variable in sequence:
(execute some instructions)

The function range():
range(n)
range(start, stop)
range(start, stop, step)

Nested loops

Loops with if/else blocks:
for variable in sequence:

if Condition:
(execute some instructions)

else:
(execute some other instructions)

Loops and conditionals: example2.py

Control statements and loops

Reading files line-by-line

open_file = open(“some_file”, “r”)

for line in open_file:
(execute some instructions on the line)

open_file.close()

Example: read a file with multiple values per line and store the values in lists

The strip() and split() methods

example3.py

Control statements and loops

while loop

while condition:
(execute some instructions)

Nested loops

Loops with else blocks:
while condition:

(execute some instructions)
else:

(execute some other instructions)

example4.py

Control statements and loops

The break statement
It is used to terminate a for/while loop when a given condition is met

for variable in sequence:
(execute some instructions)
if condition:

break <- Will exit the loop
(execute some other instructions)

The continue statement
It is used to skip instructions within a for/while loop

for variable in sequence:
(execute some instructions)
if condition:

continue
(execute some other instructions) <- Will be skipped, but will not exit the loop

Control statements and loops

The pass statement
It tells the Python interpreter to do nothing. It works as a placeholder.

for variable in sequence:
(execute some instructions)
if condition:

pass
else:

(do something else)

Functions

Functions are blocks of code that carry out specific tasks. They are useful if a
given set of operations must be repeated more than once in a code.

They give the code re-usability, i.e., the ability to use a given set of instructions
at different stages of the computation without having to modify the code.

They help with code readability, especially if they are well documented. All the
instructions required by a given task are grouped together.

They also avoid redundancy, helping with code maintainability and greatly
improving extendibility.

Functions (and their equivalents in other programming languages) are essential
ingredients in good programming practice.

Functions

def function_name(function_arguments):
(do something)
return

(return is optional)

Default arguments can be used to avoid errors when calling a function

def function_name(arg1, arg2=something):
(do something)

return

Functions always appear before the main code.

User defined functions and built-in functions

See function1.py

Invoking external commands in Python

List files using ls command:

from subprocess import call
call(‘ls’)

Return date using the Unix ‘date’ command:

import subprocess
time = subprocess.check_output(‘date’)
print(“It is”, time)

PEP8: Style Guide for Python code

Guidelines that improve the readability and consistency of Python code

https://peps.python.org/pep-0008/

Python syntax checkers can be installed, which parse Python code and report any PEP8
violations, e.g., pip8 and pycodestyle.

They can be installed in a virtual environment (see below) using

python3 –m pip install pep8

or

python3 –m pip install pycodestyle

https://peps.python.org/pep-0008/

4
Examples

Functions

Exercise 1
Write a function that returns all prime numbers up to a given maximum.

A prime number is an integer greater than 1 that cannot be written as the product of
any lower natural number: 2 is prime, 3 is prime, 4=2*2 is not prime, etc.

Questions:
1) What should the input parameter(s) of the function be?
2) How do we use loops to find out if a given number is the product of two lower

numbers?
3) What should the function return?

prime_numbers.py

Functions

Exercise 2
Write a code (containing at least one function) that computes the difference between a
series of numbers read from two different files (number from file1 minus number from
file 2) and saves these differences to an output file file3.

Note: each of the two input files contains one number per line, but the two files need
not have the same number of lines. We will only compute differences for numbers that
can be read from both files.

Questions:
1) How many files do we need to open at a given time?
2) How do we deal with the fact that the number of lines in the two input files can be

different?

Possible solution to
Exercise 2.

Can we improve this
code?

Possible solution to
Exercise 2.

Can we improve this
code?

Unnecessary
code duplication

Exception handling

Exception handling

5
Virtual environments

Virtual environments

A virtual environment is a complete Python installation which is isolated from the
system Python and from other virtual environments.

The Python interpreter, scripts, libraries and packages installed in the virtual
environment are independent and may differ from the system Python.

Virtual environments are useful for maintaining specific sets of packages or different
versions of the same package.

They are very useful when we work on HPC systems, like the CRC cluster, which do not
allow users to modify the system Python. With virtual environments we have complete
control on package installation, uninstallation, etc.

Official man page: https://docs.python.org/3/library/venv.html

https://docs.python.org/3/library/venv.html

Virtual environments

The command venv is used to create a new virtual environment:

python3 -m venv myenv

This will create a directory myenv containing the new Python installation.

We now need to activate the environment:

source myenv/bin/activate

We can ”exit” the virtual environment and return to the system Python using:

deactivate

(For Windows, see https://docs.python.org/3/library/venv.html or
https://realpython.com/python-virtual-environments-a-primer/.)

https://docs.python.org/3/library/venv.html
https://realpython.com/python-virtual-environments-a-primer/

Virtual environments: install Python packages

After activating a virtual environment, we will be using the specific version of Python
built in the environment.

To install new packages, use:

python3 –m pip install <package_name>

If a given virtual environment is no longer needed, we can delete it simply by removing
its directory:

rm –rf myenv/

Example: install numpy in a virtual environment myenv

Create and activate the virtual environment:

python3 -m venv myenv
source myenv/bin/activate

Install numpy:

python3 –m pip install numpy

Now launch the python interpreter:

python3

and check if the new package has been installed:

import numpy

To list all installed packages: python3 –m pip list

Virtual environments: Anaconda (https://anaconda.org)

Create a conda environment:

conda create -n yourenvname python=x.x anaconda

Activate the virtual environment:

source activate yourenvname

Install packages:

conda install -n yourenvname [package]

Deactivate the environment:

source deactivate

https://uoa-eresearch.github.io/eresearch-cookbook/
recipe/2014/11/20/conda/

https://anaconda.org/
https://uoa-eresearch.github.io/eresearch-cookbook/recipe/2014/11/20/conda/
https://uoa-eresearch.github.io/eresearch-cookbook/recipe/2014/11/20/conda/

Using virtual environments with CRC JupyterHub

Using

https://crc.pitt.edu/user-support/installed-software/python

https://crc.pitt.edu/user-support/installed-software/python

Python on the CRC cluster

H2P access: https://crc.pitt.edu/user-support/cluster-access

To see the versions of python installed: module spider python

To use a specific version of Python: module load python/3.7.0

https://crc.pitt.edu/user-support/cluster-access

6
NumPy/Matplotlib

https://scipy.org

https://scipy.org/

A few words on NumPy

NumPy is a Python library used for working with arrays. It also functions for working in
domain of linear algebra, Fourier transform and matrices.

You can see what NumPy makes available using the dir() function

import numpy as np
dir(numpy)

NumPy provides an array object that is up to 50x faster than traditional Python lists.

arr = numpy.array([1, 2, 3, 4, 5])
print(arr)

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)

Arrays can have 1, 2, 3 or more dimensions.

Arrays

Accessing array elements:

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print(arr[0, 1])

Negative indices can be used as in standard Python lists. Slicing also works like in lists:

print(arr[1, 1:4])

Copy and view arrays:

arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 0
print(arr); print(x)

arr = np.array([1, 2, 3, 4, 5])
y = arr.view()
y[0] = 0
print(arr); print(y)

Shape, reshape and iteration

Shape of an array:

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)

Answer: (2, 4)

Reshape an array:

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
print(newarr)

Iterating through array elements:

arr = np.array([1, 2, 3])
for x in arr:

print(x)

Join, split and search arrays

Join arrays:

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)

Split arrays:

arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 4)

Search arrays:

arr = np.array([1, 2, 3, 4, 5, 4, 4])
x = np.where(arr == 4)

Answer: (array([3, 5, 6]),)

Sort and filter arrays

Sort arrays:

arr = np.array([3, 2, 0, 1])
print(np.sort(arr))

Answer: [0 1 2 3]

It can be used with higher-dimensional arrays and with arrays of strings or booleans.

Filter arrays: use a boolean index list to select values from an array:

arr = np.array([41, 42, 43, 44])
x = [True, False, True, False]
newarr = arr[x]
print(newarr)

Answer: [41 43]

Universal functions (ufunc)

In addition to built-in functions, user-defined functions can be defined, which perform
faster than standard Python functions on lists and operate on NumPy arrays.

Example:

import numpy as np

def myadd(x, y):
return x+y

myadd = np.frompyfunc(myadd, 2, 1)

print(myadd([1, 2, 3, 4], [5, 6, 7, 8]))

frompyfunc adds the new function myadd to the NumPy ufunc library. ufunc uses
vectorization, which is a faster way to operate on elements of arrays.

More info:
https://www.w3schools.com/python/numpy/numpy_ufunc.asp

https://www.w3schools.com/python/numpy/numpy_ufunc.asp

Plotting data

We will need to install two additional packages in our virtual environment:

python3 -m pip install matplotlib

python3 -m pip install seaborn

More info:
https://matplotlib.org
https://seaborn.pydata.org

https://matplotlib.org/
https://seaborn.pydata.org/

Example: visualizing a normal distribution

The normal (or Gaussian) distribution represents the distribution of many events
around a maximum. In NumPy, we can build this distribution using the random
module:

from numpy import random

The method random.normal creates the distribution:

random.normal(loc, scale, size)

loc: center of the distribution (mean)
scale: width of the distribution (standard deviation)
size: shape of the NumPy array containing the distribution

Example: visualizing a normal distribution

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

Create distribution
sample = random.normal(loc=0.0, scale=1.0, size=1000)

Plot graph
sns.distplot(sample, hist=False)
plt.show()

We can also save the plot to a file
plt.savefig(“plot.png”)

More info:
https://matplotlib.org
https://seaborn.pydata.org

https://matplotlib.org/
https://seaborn.pydata.org/

Example: visualizing a normal distribution

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

Create distribution
sample = random.normal(loc=0.0, scale=1.0, size=1000)

Plot graph
sns.distplot(sample, hist=False)
plt.show()

More info:
https://matplotlib.org
https://seaborn.pydata.org

https://matplotlib.org/
https://seaborn.pydata.org/

Example: visualizing a normal distribution

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

Make the example reproducible
np.random.seed(0)

Create distribution
sample = random.normal(loc=0.0, scale=1.0, size=1000)

Plot graph
sns.distplot(sample, hist=False)
plt.show()

More info:
https://matplotlib.org
https://seaborn.pydata.org

https://matplotlib.org/
https://seaborn.pydata.org/

Summary

- Python is a powerful all-purpose programming and scripting language
- It has a huge standard library of packages
- It is easy and fun to learn
- It can be used to write wrappers for low-level code
- (It has object-oriented capabilities)

Where to go from here:
- Develop your own software project
- Test Jupyter and Colab notebooks
- Play with virtual environments; test Python packages

Questions and suggestions: leb140@pitt.edu

CRC web site: https://crc.pitt.edu

mailto:leb140@pitt.edu
https://crc.pitt.edu/

